Showing posts with label squares. Show all posts
Showing posts with label squares. Show all posts

Sunday, December 13, 2015

Jackson, NY: a carpenter used squares as did Biddle, 1 of 6 posts

 
 July 2022: time to review this: the 3/4/5 rectangle, thus the carpenter square, may be the basic geometry, not the square. And the sequence of the frame, how it was laid out, deserves attention.



Pass by this house. Enjoy how it is sited between its fields on the left that slope down across the flood plain to the river, and the road and the hill to the right.


It seems abandoned  - although someone carefully closed the shutters on a second floor window.

The broken dormer says there once was a wing - or the earlier house.


In the years that I've watched it, I've  thought:
C. 1800,
Dutch framed, H bents.
The new wing an update to the original farm house,
Set into the hill below the wind.

The old house, a story and a half cape set lower on the land, would have had easy access to the farmyard and the fields. It faced south to the sun, watching the traveler approach. The new wing is set higher, more worldly and 'speaks' to the road instead.


But how sad it is... broken chimney, no paint, dumpy windows,


A dilapidated front door


surrounded by fluted columns, complex and flaring capitals, a segmented architrave that curves,
the original transom,

Please click to enlarge the photograph see the lovely curved details of the architrave.

And rotted wood for plinth blocks/bases.

Worth restoring?


It will be.
The frame is well built. Here is the mortise and its peg for the beam which supports one side of the fireplace hearth,

Dismantled, repaired, it will be reassembled on a new site
with its original casings, doors, newel, and mantle.







The shape is simple: 18 ft wide by 36 ft.long. 2 rooms each floor.
2 boxes.
I thought of Owen Biddle's plan for a 'small house'.* That plan used 2 squares divided into 4 parts. Would squares divided in half work here?
Or would I find Asher Benjamin's use of squares divided in thirds?

Owen Biddle's simple division of the square works here.






The plan is 2 squares. The interior wall at the stair is located at the 3/4 mark of the left square.


The windows are placed on the centers of division of the original square . Those on either side of the fireplace are easy to read:half the big square divided into 2 little squares.

The windows beside the front door are centered on rectangles that are 1/4 of the large squares.





The cross section of the house follows the same pattern.

The first floor volume is 2 squares long and half a square high.

The height of the exterior front and rear walls is 3/4 of the square.


The second floor height is 3/8 of the height of the square.

The division of the basic 18' x 18' square into smaller parts is done by diagonals. It is visual. No one needed to write down fractions.



I think the ridge is another 1/4 the height of the square above the ceiling joists.  However since the second floor ceiling is still mostly intact, I could not measure the height to the ridge nor the slope of the roof with enough accuracy to be sure. The interior slope of the ceiling was consistent






The sadly sized windows - replacements when repair of original windows could have saved them - have mismatched clapboard above the lintel which outline the size of the original sash.








Here is my drawing of  the front of the house with its original sash. I do like this house!




















The geometry follows that of the floor plan - the square divided into its integral squares and rectangles. The intersections of the diagonals give the dimensions.
The right hand square of the house is drawn. The center line  (A - A dividing the square into 2 equal rectangles) marks the top of the entrance - probably the framed opening, not the casing.
The right window (B) is centered on the small right square which is 1/4 of the large square  or at the 1/4 mark of the right side of the house.

I think about this in 'geometry', but it is hard to show when I can't use my hands. Thus I am adding the  fractions.






 The left window (C) is centered on the half of the small left square, just as in the floor plan or at the 5/8 point.










The size of the window and where it fits in the wall is also determined by the intersections of the diagonals of the square and its parts. Here the right hand square is divided into 2 equal rectangles. I have drawn the lines in green and added emphasis at the intersections.



I measured the height of the front wall from the inside. I did not measure the eave overhang or the frieze. Here I have just laid out the diagonals of the upper half of the square to see what i might find. It looks like it might be right. I will have real dimensions when the house is dismantled. I might be right, or learn something new.






Here is the interior second floor corner where the frame is exposed. The posts which are visible are not regular in size. There is some interesting bracing.  Does the frame also correspond to the rhythm of the square?
I hope to find out.







* See  http://www.jgrarchitect.com/2015/11/owen-biddles-plan-and-elevation-for.html


The link to  the men who took down and repaired this house, Green Mountain Timber Frames:  https://www.greenmountaintimberframes.com .

Monday, November 30, 2015

Owen Biddle's 'Plan and Elevation for a Small House'





Owen Biddle published his Young Carpenter's Assistant in 1805 in Philadelphia, PA. He included 2 house designs as teaching tools. Biddle wrote that his drawings were not meant to be "eligible for the builder". Instead they were "aiming at instruction for the student".

In 1797, Asher Benjamin published The Country Builder's Assistant in Boston, MA. It also included house designs. Benjamin used crossed squares and the rule of threes in his designs,*

What geometry did Biddle use?
Here is his "small house" - Plate 36.





The layout is 2 squares side by side for the plan and the elevation. The elevation measures the square from the  first floor to the top of the brick coursing. He writes that the student "suppose the building to be raised just above the principle floor, and the wall made level all around."

I enjoyed this because a contractor today still wants his foundation and first floor level before he starts his partitions, of course!

Note on the plan  that the depth of the front porch is determined by extending the diagonals.

Usually I draw both diagonals to denote a square. Here since I will be adding other lines I decided to simplify for legibility.








Biddle designs using the square divided into quarters. On the elevation the top of the first floor windows is determined by the horizontal center line. The placement of the windows is determined by the vertical center line.

The floor plan follows the same geometry. The edge of the window frame is determined by the vertical center line.



Still using the squares, Biddle divides one half in half again, vertically.  This locates the columns - and the size of the front porch - at the 3/4 mark of the squares on each side. Note that the horizontal center line dictates not the top of the fan light casing but the height of the brickwork. These are structural dimensions, information for the brick layer, the sash maker.
The curve of the entrance stair follows the diagonal.
The width of the window is determined by the intersection of the diagonals.

On the floor plan the right hand  side of the square is divided in half; it determines the location of the wall between the rooms and the hall.










The porch is 1/4 of the square.

Here I have drawn the lines that layout the portico in red and given the pattern of the division across the bottom: 2-1-1-1-1-2.
The architrave and the roof are 1/3 of the square of the porch.







When I first saw this I thought the portico and the doorway used the rule of thirds. I was wrong. The door itself may be 1/3 of the porch, but the casing around the door is placed at  1/4 the width of the porch.  The height of the fan light is 1/4 of the square; the door below 3/4.



Note the shadow  to the right of the porch. Biddle wanted his book to teach drawing and presentation. He tells the student (reader) to "enliven the drawing by giving the appearance of shadow". (Plate 36).

This house was an exercise, just as Asher Benjamin's were. The geometry he uses comes naturally and easily, Although he knows the rule of thirds he barely uses it. He does not use crossed squares. Benjamin uses both.

This is not the geometry seen in New England nor in the folk houses documented by Glassie. It might be the geometry of Philadelphia.



 *To compare see my post:
 http://www.jgrarchitect.com/2014/05/the-country-builders-assistant-by-asher.html 


Owen Biddle, Biddle's Young Carpenter's Assistant; or A System of Architecture Adapted to the Style of Buildings in the United States, Benjamin Johnson, Philadelphia, and Ronalds & London, New York; 1805
Dover Publications, Inc. edition, 2006, unabridged republication