Showing posts with label Neo-Classic. Show all posts
Showing posts with label Neo-Classic. Show all posts

Sunday, July 24, 2016

The Old First Church Geometry - the Floor Plan - Part 4




 I first wrote about the geometry of the Old First Church in Bennington, Vermont, in September, 2012, focusing on the 2nd floor windows with their round tops.
http://www.jgrarchitect.com/2012/09/geometry-of-old-first-church-bennington.htm

I will not repeat that post and the ones that followed -  just expand upon it here.

As I studied how the church was designed I saw that the window design was the logical extension of the basic design.

This spring the full window design and then the geometry of the floor plan - which had eluded me - became obvious.

The circle geometry which determined the curves in the half round top also determined the size of the window itself and muntin pattern  in the lower section.
The completed circle of the top half intersects with the circle which begins in the lower sash. The circles divided in 4 determine the size
of the window panes.




The panes themselves are not quite square because of the thickness of the frame.

The pattern in the rounded top is made by 7 intersecting circles. The window itself is 2 intersecting circles.

I have called these 'rolling circles' because visually they seem able to roll one way or the other. Perhaps in a church the circles roll toward each other and meet..
It would be fitting symbolism for Old First Church whose covenant says the members hope to " ... become a people whom the Lord hath bound up together... "









Here is this geometry:
looking at the windows in the balcony in the church,








Here is the floor plan, measured and drawn in the 1930's by Denison Bingham Hull, the architect who supervised the church's restoration.

I superimposed a circle with its rectangle marked in red which  matches the circles that define the east interior elevation and the exterior front elevation.










This is what I had not seen before -  how the geometry of the floor layout uses the same forms as the windows. Both are 2 intersecting circles.


The rectangles laid out by the circles determine the size of the sanctuary. The diamond shape where the 2 circles cross, the center of the church,  is the  location of the dome -an acoustic device - a technological tour-de-force in 1805. The narthex fills and over flows the lower quarter of the circle. The depth and width of the front bay is determined by the arc of the circle's perimeter.









Expanding the circles in the way that the window design    'roll'  I saw that Lavius Fillmore, the master builder, did not need divide his circles into daisy wheels to locate columns and determine proportions.


This relationship of one circle to another in a linear (up and down, side to side) pattern rather than relating one circle to the next by moving around the perimeter is seen in all the elevations and plans for the Old First Church.










In the drawing to the left I have added small circles at the intersections of the arcs which mark the lines of the columns, the corners of the front bay and intersect with the perimeters of the circles at the 4 major columns - the black squares - which run from  piers in the basement through the sanctuary into the attic to anchor the trusses which carry the roof and the trusses from which the dome is suspended.




Fillmore need not have drawn a daisy wheel with its 6 petals to refine his design.
He might just have rolled his circles.


In many ways these different approaches to 'basic geometry' - as Asher Benjamin calls it - cross-reference each other. The daisy wheel and the rolling circles are variations of the same proportions.
My 'aha' moment is when I find for one way of working that is clean, simple and 'obvious'.

Here are the earlier posts about the church geometry. Each one was posted when I learned (taught myself) more about how circle geometry can be used for design. Part 1, therefore. is a preliminary understanding.  

Part 3     http://www.jgrarchitect.com/2014/11/old-first-church-and-daisy-wheel-part-3.html
Part 2     http://www.jgrarchitect.com/2014/01/old-first-church-and-daisy-wheel-part-2.html
Part 1     http://www.jgrarchitect.com/2013/01/old-first-church-and-daisy-wheel.html

.

Monday, November 30, 2015

Owen Biddle's 'Plan and Elevation for a Small House'





Owen Biddle published his Young Carpenter's Assistant in 1805 in Philadelphia, PA. He included 2 house designs as teaching tools. Biddle wrote that his drawings were not meant to be "eligible for the builder". Instead they were "aiming at instruction for the student".

In 1797, Asher Benjamin published The Country Builder's Assistant in Boston, MA. It also included house designs. Benjamin used crossed squares and the rule of threes in his designs,*

What geometry did Biddle use?
Here is his "small house" - Plate 36.





The layout is 2 squares side by side for the plan and the elevation. The elevation measures the square from the  first floor to the top of the brick coursing. He writes that the student "suppose the building to be raised just above the principle floor, and the wall made level all around."

I enjoyed this because a contractor today still wants his foundation and first floor level before he starts his partitions, of course!

Note on the plan  that the depth of the front porch is determined by extending the diagonals.

Usually I draw both diagonals to denote a square. Here since I will be adding other lines I decided to simplify for legibility.








Biddle designs using the square divided into quarters. On the elevation the top of the first floor windows is determined by the horizontal center line. The placement of the windows is determined by the vertical center line.

The floor plan follows the same geometry. The edge of the window frame is determined by the vertical center line.



Still using the squares, Biddle divides one half in half again, vertically.  This locates the columns - and the size of the front porch - at the 3/4 mark of the squares on each side. Note that the horizontal center line dictates not the top of the fan light casing but the height of the brickwork. These are structural dimensions, information for the brick layer, the sash maker.
The curve of the entrance stair follows the diagonal.
The width of the window is determined by the intersection of the diagonals.

On the floor plan the right hand  side of the square is divided in half; it determines the location of the wall between the rooms and the hall.










The porch is 1/4 of the square.

Here I have drawn the lines that layout the portico in red and given the pattern of the division across the bottom: 2-1-1-1-1-2.
The architrave and the roof are 1/3 of the square of the porch.







When I first saw this I thought the portico and the doorway used the rule of thirds. I was wrong. The door itself may be 1/3 of the porch, but the casing around the door is placed at  1/4 the width of the porch.  The height of the fan light is 1/4 of the square; the door below 3/4.



Note the shadow  to the right of the porch. Biddle wanted his book to teach drawing and presentation. He tells the student (reader) to "enliven the drawing by giving the appearance of shadow". (Plate 36).

This house was an exercise, just as Asher Benjamin's were. The geometry he uses comes naturally and easily, Although he knows the rule of thirds he barely uses it. He does not use crossed squares. Benjamin uses both.

This is not the geometry seen in New England nor in the folk houses documented by Glassie. It might be the geometry of Philadelphia.



 *To compare see my post:
 http://www.jgrarchitect.com/2014/05/the-country-builders-assistant-by-asher.html 


Owen Biddle, Biddle's Young Carpenter's Assistant; or A System of Architecture Adapted to the Style of Buildings in the United States, Benjamin Johnson, Philadelphia, and Ronalds & London, New York; 1805
Dover Publications, Inc. edition, 2006, unabridged republication










Friday, January 23, 2009

"beautiful variety of light and shade"


Asher Benjamin, 1773- 1843  Builder and  Architect

Asher Benjamin wrote for carpenters. He starts The American Builder's Companion with ten plates of basic knowledge a 'joiner' would have needed in the early 1800's, including how to divide a circle, how to layout mouldings.

Many readers seem to skip this technical part of his books, seeing it as archaic. Sometimes historians are interested in how Georgian architecture changed from using mouldings based on the circle (Roman) to those based on the ellipse (Greek). So they note the plates and move on.

They miss the man who knows how light creates. He cares about what he is seeing so passionately that he figures out how to write about it so he can share it with his readers.
I know first hand that it's not easy to put what an architect sees into words that someone else can understand!

Try this:
" In the Roman ovolo there is no turning inward, at the top: therefore, when the sun shines on its surface, it will not be so bright, on its upper edge, as the Grecian ovolo; nor will it cause so beautiful a line of distinction from the other moldings, with which it is combined, when it is in shadow, and when lighted by reflection.
...the Grecian, or quirk ovolo, ... if it is entirely in shadow, but receive a reflected light, the bending, or turning inward, at the top, will cause it to contain a greater quantity of shade in that place, but softened downward around the moulding to the under edge."

As I read his text, I met the man himself.

The quotes are from Plate IX, Names of Mouldings, American Builder's Companion, 1810.

This portrait is from the Dover Publications reprint, 1969, of The American Builder's Companion, Asher Benjamin, 6th edition, 1827. The Public Library in Greenfield was designed by Benjamin.  I have seen the original portrait at Historic Deerfield, Deerfield, MA, where Benjamin built a school.